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NUMERICAL MODELING OF THE
DEFLAGRATION-TO-DETONATION TRANSITION
CHARLES A. FOREST AND CHARLES L. MADER
Los Alamos Scientific Laboratory
University of California
Los Alamos, New Mexico
The effect of 4 confined porous bed of burning
explosive in contact with a solid explosive 1is studied
by computer simulation. The burning is modeled using a
bulk burn model that is a functioa of the surface area
and the pressure. Once pressure excursions occur from
the confined burning the transition to detonation is
modeled using a pressure-dependent heterogeneous explo-
slve shock decomposition model called Forest Fire. The
occurrence of detonation in the solid explosive is shown
to be dependent upon the surface-to-volume ratio, the
confinement of the porous bed, and the geometry of the

system.



Introduction

In some circumstances a burning high explosive or high-energy
propellant will detonate. The change from burning f*o detonation
is known as the Deflagration-to-Detonation Transition (DDT). Acci-
dents with high explosives and propellants often involve DDT,

A linear burn of an explosive proceeds at a rate of 10 to 100
cm/s, whereas a detonation wave propagates at a rate of 0.3 to 0.9
cm/us. The rates are very different and special conditions are
necessary for the transition from burning to detonation to occur.
Conditions conducive to the occurrence of DDT are the confinement
of a burning region with a large surface area and a nearby material
of high shock sensitivity. The surface area may be initially pres-
ent or may be dynamically produced as a result of stress on thLe
material. The confinement is provided both by the material strength
and the inertia of the confining material. The presence of a large
burning surface area increases the mass burn rate over that ot the
linear rate and can result in high pressures and the formation of
shocks. If the shock is strong enough, the explosive begins to
decompose, the shock grows, and finally a detonation is produced.

The burning in a porous bed is known as convective combustion.
In addition to the role of high mass burning rate and confinement,
the flow of hot gas relative to the bed of particles is often
important, especially in a large porous bed. The flowing gases

enter into the fluid dynamics (a two-phase flow problem) and transfer



heat to the particles. Ignition, flame spreading, and flame struc-
ture in the voids may also be involved. Burning of gun propellants
involves many of these processes.

Rather than try to model such a collection of processes, a
model is constructed which involves only confined burning and shock
initiation. The cases considered involve mostly solid explosive,

a small region of porous material, and adequate confinement. Such
situations may relate better to accidents since it seems unlikely
that a plece of explosive will turn entirely to dust because it is
dropped. A small region of porous material may be too small to
produce a DDT by itself. However, if the small region is in con-
tact with a large plece of solid explosive, there 1is the possibility
that detonation may occur in the solid. The burning of the porous
material need not proceed at detonation rates but needs only burn
fast enough to form a shock in the adjacent solid. 1If the solid

is sensitive to shock-induced decomposition and the shock is strong
enough, the shock will grow into a detonation wave.

The shock initiation of detonation of a heterogeneous explo-
sive has been recently numerically modeled using the Forest Fire
method1 for describing the rate of decomposition of an explosive
as a function of the local shock pressure. The model has been
used to describe the propagation and failure of heterogeneous
detonation waves along surfaces and around cornera.2

The decomposition that occurs by shock interactions with den-

sity discontinuities is described by a burn rate determined from



the experimentally measured distance of run to detonation &8s a
function of shock pressure (the Pop plot), the reactive and non-
reactive Hugoniot, and the assumption that the reaction rate de-
rived near the front can be applied throughout the flow.

With Forest Fire to describe the transition once pressure ex-
cursions occur from the confined burning, numerical modeling of the
process of burning to detonation requires a model for burning.

The bulk burn model is used to simulate the burning of a porous
bed of explosive or propellant that 1s assumed to be ignited over
all burning surfaces simultaneously. The explosive is assumed to
be divided into uni’orm pieces of similar geometry which burn at
the linear burn rate perpendicular to the surface of each particle.
The change in burning surface area as the particles are consumed is
included. The model for surface area change is motivated by three
special geometric situations; namely (1) sphere-like particles,
volumee which contain an inscribed sphere, (2) cylinder-like par-
ticles, volumes which contain an inscribed cylinder, and (3) sheet-
like particles, volumes which have constant surface area. In the
first two cases the surface area and volume of the particles are
functions of the radius of the inscribed sphere or cylinder only.
In each case there exists a q so that (surface area/initial surface
area) = (volume/initial volume)d with q = 2/3 for sphere~like, q =
1/2 for cylinder-like, and q = O for sheet-like particles. However,

qQ may assume any value to simulate mixtures of particle types.



Bulk burn is a simplified treatment of the process known as
convective combustion. 1In convective combustion hot gases from
the burn flow into the porous bed ahead of the burning region. The
flowing hct gases heat the cold particles until ignition and enter
into the fluid dynamic features (two-phase flow). In spite of the
simplifications, bulk burn is appropriate for small confined regions

where gas motion during ignition and during burning is small.

The Bulk Burn Model

The usual burn under confinement proceeds on the surface of
the explosive with a rate that increases with pressure to some
Fowe.s. It 1s important to describe the surface area available for
brining and the pressure-dependent rate law of burning. This is
called the bulk burn ucdel.

The model for bulk burning was ccnstructed using the following
assumptions.

a. The mass of propellant burns on a surface area S such
that the burn proceeds normal to the surface according to the
linear burn rate %% (for example %% - an).

b. For the purposes of the burning model only, the density

of the burning explosive is constant.

The bulk burning model mey be described by

ﬂ-_ q
It (S/V)ow

dx
dt ’



wvhere

(S/V) = initial burn surface-to-volume ratio,

o
dX
at linear burn rate,
q = geometry dependent expoment with 0 € q < 1,

W = mass fraction of unburred explosive.
Some specific ceses for q:
qe=0 , constant surface area burn
q=1/2 , cylinder-like particles burn
q = 2/3 , ephere-like particles burn.
Assuming each particle burns at a rate dx perpendicular to

dt
its surface, the time derivative of mass, M, is

dM/dt = -Sp g% .

dM/dt

~(8./V) (815 ) (o V) (/o) =

Let (S/So)

q -q q -q ]
(H/Mo) (p/oo) (oV/oovo) (o/oo) ;

then

dX

dwW/dc 3t ,

1~q . q
-(SO/VO)(p/oo) W

where

v

initial volume,
o

mass of solid explosive,

h o)
| ]

density of solid explosive,

§ = surface area burning,

(7]
[

initial surface area,



The motivation for
- q =q
(S/SO) (H/Mo) (D/Do)

comes from the consideration of three special cases for plane-,

cylinder- and sphere-like polyhedral particles.
For plane-like particles we have
S =5 , Vol = 5%
o

o
(S/So) -] = (Vol/Volo) ,
vhere £ is the thickness of particles.

For cylinder-like particles (containing an inscribed cylinder
and ignoring the surface area of the ends) we have

S = Arf , Vol = Ar22/2

(S/So) - (r/ro) - (Vol/Vol°)1/2 .

where r is the radius of the cylinder and £ ie length of the cyl-

inder.
For sphere-like particles (containing an inscribed sphere) we have

S = Ar2 . Vol = Ar3/3
/3

2 2
(S/So) - (r/ro) (Vol/Volo) ’
where r is the radius of :he sphere.
In the above cases A is a constant depending on the shape of the
particles, 2m for cylinders, 4T for spheres, 24 for cubes, and 8 for

square tubes.



In each of the above cases
(S/So) = (Vol/Volo)q , for some q.
Thus
- q -q
(S/So) (p Vol/oo Volo) (O/po)
and
- q -q - q 'q
(S/So) (M/Mo) (p/oo) W (o/po)

Since (p/po)-q is approximately one we have

e vy wIE
Calculations

The SIN3 one-dimensional Lagrangian hydrodynamic code was
used to perfornn the calculations. The Forest Fire rate for the
low density (p = 1.72) explosive was calculated from the high
density (p = 1.91) explos::E experimental Pop plot and Forest Fire
rate by a technique assuming invariance with density of the shock
wave particle velocity as a function of time to detonation and single
curve build-up as described in reference 4.

To obtain a full hydrodynamic simulation of burning to deto-
nation, the problem considered was the burning of a segment of low
density explorive adjacent to high density explosive. A sequence
of problems varying the confinement, the burn rate, and the geometry
vas calculated using explosive parameters and burn parameter ap-

preeimating HMX of q= 2/3, 2% (em/psec) = 0.007728 pO%42,

and
(S/V)0 of 75/cm and 100/cm corresponding to spheres of 0.4- and 0.3-mm

radius.



The four problem geometries are shown in Fig. 1. Two types
of confinement are considered. In one type the porous region is
between solid explosive and an aluminum case which can move into
air (problem geometries I and II), In the secord type the porous
region 1s contained in solid explosive alone (problem geometry III).
Three geometries are included--planar (problem geometry I), cylindri-
cal converging (problem goemetry II), and cylindrical diverging
(problem geometry III). The mass burn in the porous region 1is
simulated using tge bulk burn model. Bulk burn assumes that the
porous region is composed of particles of similar geometry with
some initial surface-to-volume ratio (SO/VO). For each problem
geometry, calculations are made for various (SO/VO). The bulk burn
rates for (SO/VO) = 75 and 100 are displayed ir Fig. 2.

Shock-induced decomposition of the snlid explosive is simu-
lated with the Forest Fire model. In these problems the decompo-
sition rate is taken to be a function ol pressure only. Also dis-
played in Fig. 2 are the Forest Fire rates at densities p = 1.91
and p = 1.72 as a function of pressure. The initial calculational
cell length in each region is 0.1 cm.

To i1llugtrate the effect of a low~density (high shock sensi-~
.lvity) region contained within the solid ecxplosive, one problem is
gshown using problem geometry IV. 1In thls case a 1.0-cm slab of
p = 1.72 explosive 18 embedded in the solid and reacts using the

Forest Fire model.



The results of the calculations are shown in Figs. 3-7. 1In
each frame of the figures is shown a graph of pressure as a func-
tion of distance and a graph of mass fraction as a function of
distance. The pressure scale is given in the lower right corner
(e.gzléo kbar); the mass traction scale is always O to 1.0. Time
is ﬁkdicated on each frame in microseconds. The initial surface-
to-volume ratio (S/V)o for the bulk burn region is as specifiad
for each figure.

Comparison of the problems gives some insight into the im-

portance of the various boundary conditions, geometric symmetry,

and processes. The l-u plane geometry problems (I) show the effect

of varying the surface-to-volume (S/V)O ratio. The (S/V)o of 100
results in detcaation as shown in Fig. 3 and fails to cause deto-
nation if (S/V)o is 75 as shown in Fig. 4.

The cylindrical converging geometry problem (II) results in
detonation with an (S/V)0 of 75 as shown in Fig. 5. The cylindri-
cal diverging geometry problem (II1) fails to cause detonaticn
with an (S/V)o cf 100 as shown in Fig. 6. This illustrates the
balance between the bulk burn and the diverging wave which lowers
the pressure. The case of (S/V)o- 130 detonates just prior to the
wave reaching the outer case, whereas (S/V)o = 100 fails to deto-
nate. Comparison of these to the planar and cylindrical converg-
ing problems shows that geometry is a very significant factor in

the ultimate outcome.
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Problem geometry IV is similar to problem geometry I except
for the inclusion of a 1.0-cm region of lower density explosive.
The problem with (S/V)o = 75 shows detonation occurs about 1.4 cm
into the p = 1.91 explosive past the lower density region as shown

in Fig. 7. The presence of the low density region noticeably

alters the pressure wave even though detonation did not occur in the

1.72 g/cc explosive region. The pressure wave as incident on the
1.72 g/cc explosive region 1is too low to cause detonation to occur
in a 1.0-cm run; however it is sufficient to induce significant

pcrtial decomposition which adds to the wave causing detomnation in

the adjacent high density explosive.

Conclusions

This study has examined some of the conditions leading to
detonation in a solid explosive bounded by a confined porous burn-
ing region. Items important to occurrence of detonation are
(1) the nurface area burning, (2) the confinement of the burning
region, (3) the geome-ry of the system, and (4) the shock sensi-
tivity of the adjacent solid material. Items (1), (2). and (3)
work together to produce the pressure waves which generate shocks
in the solid. Geometry 1s especially critical in this regard; a
system which may not produce detonation in planar geometry may
well induce detonation in converging geometry. The solid material
chock sensitivity determines the response to the shocks generated.

The planar geometries (I and IV) with (S/V)0 = 75 1{llustrate this

11



effect well. Only a portion of the solid explosive adjacent to
the burning region need be more sensitive to go from - nondetonat-
ing condition to a detonating one.

This study suggests that realistic numerical modeling of the
burning to detonation process is possible. Further development of
the model should permit numerical simulation of experimental obser-
vations of burning to detonation and result in increased understand-

ing of this challenging problem.
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FIGURE CAPTIONS

1. Problem geometries for explosive burning to detonation
calculations.

2., Forest Fire shock decomposition rates for explosive at two
densities and bulk bur: rate for explosive at p = 1.72 and
(S/V)o = 75 and 100/cm.

3. SIN calculation for the 1-D plane problem geometry I with
(S/\’)o = 100/cm.

4. SIN calculation for the 1-D plane problem geometry I with
(S/V)o » 75/cm.

5. SIN calculations for the 1-D cylinder problem geometry II
with (S/V)o = 75/cm.

6. SIN calculation for the 1-D cylinder problem geometry III
with (S/V)O = 100/cm.

7. SIN calculation for the 1-D plane problem geometry IV with

(S/V)o = 75/cm.
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1-D PLANE

Problem Geometry I (Figs. 3 and 4)
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Problem Geometry IV (Fig. 7)
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